Summary

Previous studies using MMT described the magnetic moments of individual grains by dipoles. Here we showed that it is also possible to solve for higher order spherical harmonics, and thus describe more complex magnetic systems in individual grains. This is particularly useful to determine the magnetisation of very large grains with multidomain behavior and grains that are very close to the surface of the sample and hence have a strong magnetic expression in the magnetic surface scan.

Abstract

Micromagnetic tomography aims at reconstructing large numbers of individual magnetizations of magnetic particles from combining high-resolution magnetic scanning techniques with micro X-ray computed tomography (microCT). Previous work demonstrated that dipole moments can be robustly inferred, and mathematical analysis showed that the potential field of each particle is uniquely determined. Here, we describe a mathematical procedure to recover higher orders of the magnetic potential of the individual magnetic particles in terms of their spherical harmonic expansions (SHE). We test this approach on data from scanning superconducting quantum interference device microscopy and microCT of a reference sample. For particles with high signal-to-noise ratio of the magnetic scan we demonstrate that SHE up to order n = 3 can be robustly recovered. This additional level of detail restricts the possible internal magnetization structures of the particles and provides valuable rock magnetic information with respect to their stability and reliability as paleomagnetic remanence carriers. Micromagnetic tomography therefore enables a new approach for detailed rock magnetic studies on large ensembles of individual particles.